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Spontaneous ferromagnetic ordering in magnetic fluids

Alexey O. Ivanov
Department of Mathematical Physics, Urals State University, Lenin Avenue, 51, 620083 Ekaterinburg, Russia
(Received 20 November 2002; published 11 July 2003

This paper is devoted to the theoretical justification of spontaneous orientational order in magnetic fluids. We
study the self-consistent solutions of the Bogoliubov-Born-Green-Kirkwood-Yvon equation connecting the
one-particle distribution function with the pair correlation function. This self-consistent approach is used in the
specific density functional method and proves to be equivalent to the mean field theory. On the basis of the
second-order perturbation method over the intensity of dipole-dipole interparticle interaction the following
effect is discovered: the self-consistent density functional approach leads to the spontaneous “ferrimagnetic”
state of the magnetic fluid induced by the dipole-dipole interaction. This strange result seems to be physically
meaningless and prejudices the validity of the density functional methods and mean field theories applied to
orientational microstructure in ferrofluids.
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Dipolar fluids are a widely studied model in statistical for polar fluids and ferrofluids, proved the existence of “lig-
mechanics. These systems are important not only becauséd paramagnetic—liquid ferromagnetic” phase transition, the
dipolar interactions are omnipresent, but also because thegonditions of which turned out to be dependent on the shape
play a prominent role in many artificial systems, such asf the container with a ferrofluid. The highly elongated el-
ferrofluids, magnetorheological and electrorheological suslipsoid of revolution is the most suitable and, in this case, the
pensions. Recent computer simulatidids-4] have shown direction of spontaneous magnetization coincides with the
that the microscopic structure of dipolar fluids is much moremajor semiaxis of the ellipsoid. It is worth noting that the
complex than previously expected. The system at high dipomean spherical model and the thermodynamic perturbation
lar strength and low volume fraction has proved to associattheories[12,13], describing well the magnetic properties of
in chain aggregatd®—4], while at higher volume fraction a practically used ferrofluids, do not predict the ferromagnetic
spontaneous formation of a ferroelectric phase has been obrder. The last mentioned result was not also obtained in
served[1]. Presence of an additional attractive force has recomputer calculations on ferrofluid and polar fluid micro-
sulted in a usual condensation, as in the Stockmayer fluigtructure[3,14].

[4]. Here we are not going to dwell on the peculiarities of

Applying to ferrofluids, a lot of experimental studies, computer simulations and physical reasons for the spontane-
demonstrating not only the chainlike aggregate existence, butus orientational ordering in fluids with the interparticle
also their great influence upon rheological, diffusional andmagnetic dipole-dipole interaction. The properties of one-
hydrodynamic properties of ferrofluids, are worth mention-particle distribution function are considered below, and the
ing (see, for example, Ref5]). The condensation of ferro- density functional approacfi0] is proved to be equivalent
particles, known as phase separation, has also been obsertedthe mean field theory. We study the self-consistent solu-
[6,7]. Concerning the spontaneous orientationally orderedions of the Bogoliubov-Born-Green-Kirkwood-Yvon
state (“ferromagnetic order’) in ferrofluids, it should be (BBGKY) equation connecting the one-particle distribution
noted that direct experimental evidences have never bednnction with the pair correlation function. On the basis of
found. The only exception is the papgr] reporting the the second-order perturbation method over the dipole-dipole
dominance of ferromagnetic fluctuations for dense ferrofluinterparticle interaction intensity, the following effect is dis-
ids. covered: the self-consistent density functional approach

In this paper we focus our attention on the basic problemeads to the spontaneous “ferrimagnetic” state of the mag-
of spontaneous orientational order in magnetic fluids. Thenetic fluid induced by the dipole-dipole interaction. This
possibility of such state practical realization is not only of strange result seems to be physically meaningless and preju-
great interest from the principal physical point of view, but dices the validity of the density functional methods and mean
also is of, no doubt, importance for many applications. It wadield theories applied to the orientational microstructure in
in the beginning of 1980s when the orientational ordder-  ferrofluids. It should be pointed out that we do not cast doubt
romagnetic stajewas predicted by using the Weiss meanon the density functional theory in general, since a lot of
field method for accounting the interparticle dipole-dipole physically successful applications of this method are known.
interaction in ferrofluidg8]. In the 1990s, after computer A modern theoretical approach to the problem of sponta-
modeling results on the properties of polar fluids were pubneous orientational ordering in dipole fluids is based on the
lished[1], the interest in the problem arose again. In thesealensity functional algorithrh10]. Thermodynamic energy of
and later paper®] the following fact was pointed out: while the system is self-consistently expressed as a functional of
resting spatially disordered, the polar fluid and ferrofluid un-the one-particle distribution functiog,(€2). This function
dergo the phase transition resulting in the appearance of oridetermines the probability for the randomly chosen magnetic
entational order. The subsequent theofE311], developed particle 1 to be oriented along th®,(wq;{;) direction.
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Minimization of the energy functional leads to the integral the results in terms of ordern*** U1, Naturally, in the
equation for the one-particle distribution function, one of thecase of negligibly weak interparticle interaction, E@)
solution of which is anisotropic in the orientational sp&e  gives the solution for an ideal paramagnetic gas:
even in the absence of an external field. The funaggi(2;)
fulfills the normalization condition and determines the ferro- g1(w1)=0o(w1) = (al/sinha)expla cosw;),  (3)
fluid magnetizatiorM:

M=M (a)=nmlL(«), L(a)=cotha—1/a,

f 91(@1)d 2y =1, whereM | stands for the Langevin magnetization.
From the definition of the pair correlation function, the
1 (= following expression, equivalent to the virial expansion,
M(H)=nm§f0 cosw1gi(wy)sinw; doy, (D) holds true:

dQ,=(4m) Lsinw; do; d¢;, 92(12)=go( 01)Jo( @2)9(12), 4

wheren is the ferroparticle concentration amdlis the par-  Where theg,(12) function takes into account the interparticle
ticle magnetic moment||Oz stands for an external mag- correlations in a ferroparticle system,

netic field being parallel to major axi®z of the container L N N I:|

with ferrofluid in a shape of infinitely elongated ellipsoid of ~

revolution. Applying to ferrofiuids the one-particle distribu- 92(12= WJ 1:[3 dri .1:[3 Jo(w;)d€Y; exp( - ﬁ)

tion functiong,; depends only on the angle; between the (5)
orientation of a magnetic moment of randomly chosen ferro-

particle 1 and an external field direction. On the basis of 1 N N 0
BBGKY formalism the dlfferennathn of functlorg.l(wl) 7= _Nf H drif H Jo(w;)d€; exp( __),
with respect taw; leads to the equatigfi3], connecting the \ 1 kT
one-particle distribution function with the pair correlation
functiong,(rq,r,,Q24,0,)=g,(12),

N
H=i<j2:1 [U(i])+Uq(ij)].

dgi(w1) . n
d—=—aSInwlgl(wl)—ﬁJ’ sz R
@1 Here Z is the partition function andH is the interaction
dUy(12) Hamiltonian of N ferroparticles freely moving and rotating
X f driz—g . —92(12). (2)  inside volumeV and interacting through the central energy
! U, and the dipole-dipole enerdyy. It is worth mentioning
dr; :riz} dr;; sing;; dg; dej; . that g, should be considered as the integral-type functional

(5 ongo: 92(12)=9g5[129o].
Here U4(12) is the energy of dipole-dipole interaction be- The solution of Eqs(2) and (4) with the accuracy of
tween the magnetic moments of ferroparticles 1 andr2; terms~U§was considered in Reff13]. The results obtained
=mH/kT has a meaning of the Langevin parameter; the vecfor magnetic properties of dense ferrofluids and dielectric
torry;(rij , 0;j ,¢ij) connects the centers of spherical particlesproperties of polar fluids are in a good agreement with the
i andj; the integrations ovef), anddr, correspond to the experimental datd15] and the computer simulatiord4]
averaging over all orientations and positions of the seconéhcluding the ferrofluids with maximum allowable magnetic
ferroparticle; and we use the fact that the spatial two-particlphase concentration~18%, saturation magnetization
probability depends only on the mutual interparticle distance~90 kA /m, and the values of Langevin initial susceptibility
rij, that is, g,(rq1,r2,Q21,02,) =05(r12,€4,€,). Equation xL=4mnm?/3kT~6. The ferrofluid magnetizatiof3] is
(2) is exact and includes all the corrections to the oneexpressed in a form of rather complicated series on the
particle distribution function influenced by multiparticle cor- Langevin magnetization and equals to zero in the absence of
relations. Moreover, Eq2) describes the equilibrium distri- an external field. The Eg$2) and (4) solution structure is
bution and, thus, its solution ensures the minimum of thetypical in all orders of the thermodynamic perturbation
system free energy. In this case, this approach is equivaletiteory over the dipole-dipole interaction energy. In other
to the variation method used in the density functional apwords, the exact expressiof) does not predict the existence
proach. Besides that, E() is of principal nature. On this of a “ferromagnetic” state in ferrofluids.
basis the cluster expansion methods may be developed to The density functional approachlO] uses the self-
determine the ferrofluid magnetizatigpolar fluid polariza-  consistent expression of the pair correlation functig12)
tion) in the arbitrary values of an external field. An importantin terms of the one-particle distribution functigp:
feature of the method is that the right part of E2).contains
the first orders of particle concentrationand dipole-dipole 92(12)291(0’1)91(602)52[12.91]- (6)
interaction potential . Thus, the determination of the pair
correlation functiorg,(12) up to the order of- nk,UE gives  This expression differs from the exact one, E4), in sub-
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stitution of an ideal paramagnetic gas distribution functionas an exact statistical result. With the help of E§$.and(6)
go(w;) by the unknown ong;(w;). It should be pointed out one can easily get the self-consistent integral equation for the
that such replacement is only one of the approximations besne-particle distribution function in an exponential form ac-
ing used in statistical mechanics, which could not be treatedording to an ideal paramagnetic gas:

dU4(12)~
exp[acoswl o[ don [ a0, 0400) [ ar =22 d"( a1 2g1]}
g1(wq) = ( 2 (7)
J dQl EX[{aCOSwl ka dle dQZ gl(wz)J drlz g2[12gl]}

The only difference between Eqé7) and (3) is that the imposes an additional influence by way of one-particle dis-
exponential factor in Eq.7) contains the sum of an external tribution functionsg,(w;). The latter also takes into account
field and the function of interparticle dipole-dipole correla- the dipole-dipole interaction, the influence of which turns out
tions. The last one should be expressed in terms of ferrofluigp be overestimated|t is worth mentioning that for moder-
magnetizatiorM. This sum should be considered as effectiveately concentrated ferrofluids with rather small particles and
magnetic field acting on a single particle. initial Langevin susceptibilityy, ~3, none of the experi-

To study the properties of E¢7) let us consider the ex-  mental and computer studies demonstrate the existence of
pansion ofg,[12g,] with zero-order accuracy over the ferromagnetic order Therefore, it is not a surprise that such
dipole-dipole potentialUy. As was mentioned earlier, this excess account for the dipole-dipole interaction leads to the
approximation was equal to the first-order perturbationprediction of a ferromagnetic state in dipolar fluids.
method. In this case we assume that all interparticle correla- The behavior appears to be much stranger when this ef-
tions are controlled by the spherical part of the interparticlefective field is calculated on the basis of the second-order
interaction energy(ij) (hard or soft sphere repulsion, van perturbation methofiL3], in the framework of which the pair

der Waals attraction, efc.that is,g,[ij,9:]1=9s(ij). Here  correlation functiong,[12g,] is determined under the con-
gs(ij) stands for the pair distribution function of the refer- dition when all the corrections linear in dipole-dipole inter-
ence systerfsystem of particles, interacting through the cen-action energyU, are taken into account. Using the self-
tral interparticle energyJ4(ij) only]. Substituting the func- similar replacement(6) from the definition of the pair
tion gs(12)=gs(|r1—r,|) in Eq.(7) we solve the problem of correlation function, we get

dipole-dipole interactiotd 4 averaging over all positions and

orientations of particle 2. This integration depends on the

shape of the systel(m)ut_does not depend on the_vqlume and 0,[129:1=[1— BU4(12)]194(12) + exd — BU(12)]n

on the type of central interparticle interactjofft is impor-

tant to stress that using the infinitely elongated ellipsoidal
shape is of advantage because this is just the case when
demagnetization factors are of no consequence and do not
need to be accounted for. For this shape of a ferrofluid con- —BU4(23) Jexd — BU(13) — BU(23)]

tainer we get
~2 [ droa[ 0023 [ a2, 010510100

x fdrsj dQ391(w3)[ —BU4(13)

01(w1) = (ae/sinhag)exp @ COSw,),

M=M_(ae)=nmL(ae), 8 ><[—,8Ud(34)]exr.[—,6’US(34)]},
ae=MH /KT, He=H+47M(H)/3.

The expression for an effective magnetic fiéld coincides B=1/KT. (9)
with those in the Weiss mean field theory. Thus, the self-

consistent density functional approa@) is equivalent to

the mean field theory, and in the framework of the first-order The express|0n for the pa”‘ correlation function f0||OW|ng

perturbation method predicts the ferromagnetic phase transfrom the averaging over the positions and orientation of the
tion in the absence of an external field, whgre3. Appar-  third and fourth particle in Eq(9) could be found in Ref.
ently, this is caused by the fact that in exact virial expansionf13]. The result for the one-particle distribution function rep-
(4) of the palr correlation function all the influence of the resents the exponent|a| factor in expresqﬁhm a form of
dipole-dipole interaction is determined only by function expansion over the first- and second-order Lagrange polyno-
0,[129,]. The approximate self-consistent expressiéh  mials P,(z), n=1,2:
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exd G, (a,M,Q)P;(cosw;) + G,(M)P,(cosw;)]

g1(w1)= , (10)
fdﬂlexqel(a,m,Q)Pl(cos,w1)+Gz(|\7|)P2(c05wl)]

Gi(a,M,Q)=a+ x M+ (x2/148)M(1+29Q—96M?), G,(M)=29y*M?/96,

M:f dQ;9;(wq)P1(coswy), Q:f dQ19;:(w1)Py(cosw,).

Here M =M/nm is the relative magnetization, ar@ has a meaning of quadrupole moment of the one-particle distribution
function describing the degree of ferroparticle moment parallel alignment. Since we are interested in a one-particle distribution
function zero field behavior, the coefficien®,; and G, of expansion(10) should be determined numerically from the
following set of equations:

fdﬂlexqel(o,i\?l,Q)Pl(COSwl)+Gz(M)Pz(coswl)]Pl(coswl)

M= , (11

fdﬂlexF{Gl(O,M,Q)Pl(c03w1)+Gz(M)PZ(COSwl)]

f dQ, exg G,(0,M,Q)P;(cosw;) + G,(M)P,(cosw;) ]P,(cosw)

Q
f dQ, exg G1(0,M,Q)P,(cosw;) + G,(M)P,(cosw;)]

In the case where no external magnetic field is presenticle system. However, the relative magnetization does not
(a=0) two kinds of the solution exist. The first one is exceed the valudl, , M, ~0.6. This leads to a very sur-
trivial, when the distribution moment8 and Q equal to  prising conclusion that fog, > x, about 80% of the particle
zero. Consequently, we g&,=G,=0 andg;(w;)=1. It  magnetic moments are codirectional to tz axis, and
means that the orientational distribution of ferroparticle magsearly 20% of the ferroparticles are aligned antiparallel. This
netic moments is homogeneous according to no magnetizesffect is demonstrated in Fig. 2, and the anisotropic orienta-
liquid state of ferrofluid. tional distributiong,(w4) is characterized by the presence of

Besides that, when the interparticle dipole-dipole interactwo maximums describing the probabilities for the randomly
tion is rather intensive and the particle concentration is nothosen magnetic moment to be coparallel € 0) or anti-
low, the bifurcation of a solution occurs, resulting in the parallel (w,= ) to a major ellipsoiddz axis. This behavior
appearance of the inhomogeneous orientational distributiorof the one-particle distribution function looks like the liquid
The unique parameter determining the bifurcation point isferrimagnetic state instead of the liquid ferromagnetic state,
the initial Langevin susceptibility, . From set(11) the criti-  predicted by the first-order perturbation meth(®) (the
cal bifurcation value y, may be easily obtainedy, Weiss mean field modéB]) and by the theoreticdll0] and
=12(y/5—2)~2.833. The last bifurcation value is less than computer model§l,9]. A mathematical reason is that, unlike
the critical oney, =3 obtained from the Weiss mean field
approach(8). In the region ofy, >y, , the solution of the

equation setll) is demonstrated in Fig. 1. Both the quanti- 0
tiesM, andQ, are the increasing functions gf , and in the

local vicinity of the critical point the following scaling de-

pendencies hold true: 051

M~ —x)Y% Q~(xL—xx)- (12)

The analysis of Fig. 1 exposes the strange feature of this
anisotropic solution. With thg, growth the quadrupole mo-
ment Q asymptotically reaches the maximum allowable FIG. 1. Anisotropic solution of Eqg11): curve 1 is the depen-
value, that is, unity:Q—1, x> yx, . This means that all dence of the spontaneous relative magnetizalibron the initial
magnetic moments tend to align along t@e axis of the  susceptibilityy, in the regiony, > x, ; curve 2 is the same depen-
container for strongly interacted and concentrated ferropardence for quantityQ.

2 4 6 8 10 12 X

011503-4



SPONTANEOUS FERROMAGNETIC ORDERING IN . .. PHYSICAL REVIEW &B, 011503 (2003

g(w) (and the ferromagnetic one as welthe only physically
meaningful solution of Eqg11) is the homogeneous, orien-
tationally undisordered liquid state of ferrofluid in the ab-

201 sence of an external field.
The point is that the second-order self-consistent pertur-
bation model does not predict the spontaneous ferromagnetic
1or orientational ordering. So, any principal physical conclusion
\ concerning the possibility of a ferromagnetic state in ferro-
0 , fluids, arising from the mean field theories and density func-
n w2 0 tional models[10], has no experimental verification and is
@ not to be treated as an exact theoretical result. This conclu-
FIG. 2. Zero field inhomogeneous one-particle distribution func-Sion seems to be an artificial consequence from the self-
tion g;(w,) (10): the character angle dependence for cgse 8. consistent approximatio(6), and the phenomenon of spon-

taneous orientational ordering in magnetic fluids induced by
the dipole-dipole interaction has to be considered extremely

the first-order perturbation methdd), the approximation of 9uestionab|e.

the second perturbation order over the dipole-dipole energ
takes into account the interaction in all pairs and triplets of The present research was carried out with the financial
ferroparticles13]: namely, the account of dipole-dipole in- support of RFBR Grant No. 03-02-04-001, RME Grant No.
teraction in ferroparticle triplets results in disordering of E02-3.2-164 and the President of Russian Federation Grant
magnetic moments. Since we cannot find any physical reaNo. 02-15-99308. This research was also made possible in
sons substantiating the ferrimagnetic ordering in ferrofluidpart by CRDF Award No. REC-005.
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