
PHYSICAL REVIEW E 68, 011503 ~2003!
Spontaneous ferromagnetic ordering in magnetic fluids

Alexey O. Ivanov
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~Received 20 November 2002; published 11 July 2003!

This paper is devoted to the theoretical justification of spontaneous orientational order in magnetic fluids. We
study the self-consistent solutions of the Bogoliubov-Born-Green-Kirkwood-Yvon equation connecting the
one-particle distribution function with the pair correlation function. This self-consistent approach is used in the
specific density functional method and proves to be equivalent to the mean field theory. On the basis of the
second-order perturbation method over the intensity of dipole-dipole interparticle interaction the following
effect is discovered: the self-consistent density functional approach leads to the spontaneous ‘‘ferrimagnetic’’
state of the magnetic fluid induced by the dipole-dipole interaction. This strange result seems to be physically
meaningless and prejudices the validity of the density functional methods and mean field theories applied to
orientational microstructure in ferrofluids.
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Dipolar fluids are a widely studied model in statistic
mechanics. These systems are important not only bec
dipolar interactions are omnipresent, but also because
play a prominent role in many artificial systems, such
ferrofluids, magnetorheological and electrorheological s
pensions. Recent computer simulations@1–4# have shown
that the microscopic structure of dipolar fluids is much mo
complex than previously expected. The system at high d
lar strength and low volume fraction has proved to assoc
in chain aggregates@2–4#, while at higher volume fraction a
spontaneous formation of a ferroelectric phase has been
served@1#. Presence of an additional attractive force has
sulted in a usual condensation, as in the Stockmayer fl
@4#.

Applying to ferrofluids, a lot of experimental studie
demonstrating not only the chainlike aggregate existence
also their great influence upon rheological, diffusional a
hydrodynamic properties of ferrofluids, are worth mentio
ing ~see, for example, Ref.@5#!. The condensation of ferro
particles, known as phase separation, has also been obs
@6,7#. Concerning the spontaneous orientationally orde
state ~‘‘ferromagnetic order’’! in ferrofluids, it should be
noted that direct experimental evidences have never b
found. The only exception is the paper@7# reporting the
dominance of ferromagnetic fluctuations for dense ferro
ids.

In this paper we focus our attention on the basic probl
of spontaneous orientational order in magnetic fluids. T
possibility of such state practical realization is not only
great interest from the principal physical point of view, b
also is of, no doubt, importance for many applications. It w
in the beginning of 1980s when the orientational order~fer-
romagnetic state! was predicted by using the Weiss me
field method for accounting the interparticle dipole-dipo
interaction in ferrofluids@8#. In the 1990s, after compute
modeling results on the properties of polar fluids were p
lished @1#, the interest in the problem arose again. In the
and later papers@9# the following fact was pointed out: while
resting spatially disordered, the polar fluid and ferrofluid u
dergo the phase transition resulting in the appearance of
entational order. The subsequent theories@10,11#, developed
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for polar fluids and ferrofluids, proved the existence of ‘‘liq
uid paramagnetic–liquid ferromagnetic’’ phase transition,
conditions of which turned out to be dependent on the sh
of the container with a ferrofluid. The highly elongated e
lipsoid of revolution is the most suitable and, in this case,
direction of spontaneous magnetization coincides with
major semiaxis of the ellipsoid. It is worth noting that th
mean spherical model and the thermodynamic perturba
theories@12,13#, describing well the magnetic properties
practically used ferrofluids, do not predict the ferromagne
order. The last mentioned result was not also obtained
computer calculations on ferrofluid and polar fluid micr
structure@3,14#.

Here we are not going to dwell on the peculiarities
computer simulations and physical reasons for the spont
ous orientational ordering in fluids with the interpartic
magnetic dipole-dipole interaction. The properties of on
particle distribution function are considered below, and
density functional approach@10# is proved to be equivalen
to the mean field theory. We study the self-consistent so
tions of the Bogoliubov-Born-Green-Kirkwood-Yvo
~BBGKY! equation connecting the one-particle distributi
function with the pair correlation function. On the basis
the second-order perturbation method over the dipole-dip
interparticle interaction intensity, the following effect is di
covered: the self-consistent density functional appro
leads to the spontaneous ‘‘ferrimagnetic’’ state of the m
netic fluid induced by the dipole-dipole interaction. Th
strange result seems to be physically meaningless and p
dices the validity of the density functional methods and me
field theories applied to the orientational microstructure
ferrofluids. It should be pointed out that we do not cast do
on the density functional theory in general, since a lot
physically successful applications of this method are know

A modern theoretical approach to the problem of spon
neous orientational ordering in dipole fluids is based on
density functional algorithm@10#. Thermodynamic energy o
the system is self-consistently expressed as a functiona
the one-particle distribution functiong1(V). This function
determines the probability for the randomly chosen magn
particle 1 to be oriented along theV1(v1 ;z1) direction.
©2003 The American Physical Society03-1
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Minimization of the energy functional leads to the integ
equation for the one-particle distribution function, one of t
solution of which is anisotropic in the orientational spaceV,
even in the absence of an external field. The functiong1(V1)
fulfills the normalization condition and determines the fer
fluid magnetizationM:

E g1~v1!dV151,

M ~H !5nm
1

2E0

p

cosv1g1~v1!sinv1 dv1 , ~1!

dVi5~4p!21 sinv i dv i dz i ,

wheren is the ferroparticle concentration andm is the par-
ticle magnetic moment;HuuOz stands for an external mag
netic field being parallel to major axisOz of the container
with ferrofluid in a shape of infinitely elongated ellipsoid
revolution. Applying to ferrofluids the one-particle distribu
tion functiong1 depends only on the anglev1 between the
orientation of a magnetic moment of randomly chosen fer
particle 1 and an external field direction. On the basis
BBGKY formalism the differentiation of functiong1(v1)
with respect tov1 leads to the equation@13#, connecting the
one-particle distribution function with the pair correlatio
function g2(r1 ,r2 ,V1 ,V2)[g2(12),

dg1~v1!

dv1
52a sinv1g1~v1!2

n

kTE dV2

3E dr12

dUd~12!

dv1
g2~12!. ~2!

dr i j 5r i j
2 dri j sinu i j du i j dw i j .

Here Ud(12) is the energy of dipole-dipole interaction b
tween the magnetic moments of ferroparticles 1 and 2a
5mH/kT has a meaning of the Langevin parameter; the v
tor r i j (r i j ,u i j ,w i j ) connects the centers of spherical partic
i and j; the integrations overV2 anddr12 correspond to the
averaging over all orientations and positions of the sec
ferroparticle; and we use the fact that the spatial two-part
probability depends only on the mutual interparticle distan
r i j , that is, g2(r1 ,r2 ,V1 ,V2)5g2(r12,V1 ,V2). Equation
~2! is exact and includes all the corrections to the o
particle distribution function influenced by multiparticle co
relations. Moreover, Eq.~2! describes the equilibrium distri
bution and, thus, its solution ensures the minimum of
system free energy. In this case, this approach is equiva
to the variation method used in the density functional
proach. Besides that, Eq.~2! is of principal nature. On this
basis the cluster expansion methods may be develope
determine the ferrofluid magnetization~polar fluid polariza-
tion! in the arbitrary values of an external field. An importa
feature of the method is that the right part of Eq.~2! contains
the first orders of particle concentrationn and dipole-dipole
interaction potentialUd . Thus, the determination of the pa
correlation functiong2(12) up to the order of;nk,Ud

k gives
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the results in terms of order;nk11,Ud
k11 . Naturally, in the

case of negligibly weak interparticle interaction, Eq.~2!
gives the solution for an ideal paramagnetic gas:

g1~v1![g0~v1!5~a/sinha!exp~a cosv1!, ~3!

M5ML~a!5nmL~a!, L~a!5cotha21/a,

whereML stands for the Langevin magnetization.
From the definition of the pair correlation function, th

following expression, equivalent to the virial expansio
holds true:

g2~12!5g0~v1!g0~v2!g̃2~12!, ~4!

where theg̃2(12) function takes into account the interpartic
correlations in a ferroparticle system,

g̃2~12!5
1

ZVN22E )
i 53

N

dr iE )
i 53

N

g0~v i !dVi expS 2
Ĥ

kT
D ,

~5!

Z5
1

VNE )
i 51

N

dr iE )
i 51

N

g0~v i !dVi expS 2
Ĥ

kT
D ,

Ĥ5 (
i , j 51

N

@Us~ i j !1Ud~ i j !#.

Here Z is the partition function andĤ is the interaction
Hamiltonian ofN ferroparticles freely moving and rotatin
inside volumeV and interacting through the central ener
Us and the dipole-dipole energyUd . It is worth mentioning
that g̃2 should be considered as the integral-type functio
~5! on g0 : g̃2(12)5g̃2@12,g0#.

The solution of Eqs.~2! and ~4! with the accuracy of
terms;Ud

2 was considered in Ref.@13#. The results obtained
for magnetic properties of dense ferrofluids and dielec
properties of polar fluids are in a good agreement with
experimental data@15# and the computer simulations@14#
including the ferrofluids with maximum allowable magnet
phase concentration;18%, saturation magnetizatio
;90 kA /m, and the values of Langevin initial susceptibili
xL54pnm2/3kT;6. The ferrofluid magnetization@13# is
expressed in a form of rather complicated series on
Langevin magnetization and equals to zero in the absenc
an external field. The Eqs.~2! and ~4! solution structure is
typical in all orders of the thermodynamic perturbatio
theory over the dipole-dipole interaction energy. In oth
words, the exact expression~4! does not predict the existenc
of a ‘‘ferromagnetic’’ state in ferrofluids.

The density functional approach@10# uses the self-
consistent expression of the pair correlation functiong2(12)
in terms of the one-particle distribution functiong1:

g2~12!5g1~v1!g1~v2!g̃2@12,g1#. ~6!

This expression differs from the exact one, Eq.~4!, in sub-
3-2
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stitution of an ideal paramagnetic gas distribution funct
g0(v i) by the unknown oneg1(v i). It should be pointed ou
that such replacement is only one of the approximations
ing used in statistical mechanics, which could not be trea
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as an exact statistical result. With the help of Eqs.~2! and~6!
one can easily get the self-consistent integral equation for
one-particle distribution function in an exponential form a
cording to an ideal paramagnetic gas:
g1~v1!5

expFa cosv12
n

kTE dv1E dV2 g1~v2!E dr12

dUd~12!

dv1
g̃2@12,g1#G

E dV1 expFa cosv12
n

kTE dv1E dV2 g1~v2!E dr12

dUd~12!

dv1
g̃2@12,g1#G . ~7!
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The only difference between Eqs.~7! and ~3! is that the
exponential factor in Eq.~7! contains the sum of an extern
field and the function of interparticle dipole-dipole correl
tions. The last one should be expressed in terms of ferrofl
magnetizationM. This sum should be considered as effect
magnetic field acting on a single particle.

To study the properties of Eq.~7! let us consider the ex
pansion of g̃2@12,g1# with zero-order accuracy over th
dipole-dipole potentialUd . As was mentioned earlier, thi
approximation was equal to the first-order perturbat
method. In this case we assume that all interparticle corr
tions are controlled by the spherical part of the interparti
interaction energyUs( i j ) ~hard or soft sphere repulsion, va
der Waals attraction, etc.!, that is, g̃2@ i j ,g1#5gs( i j ). Here
gs( i j ) stands for the pair distribution function of the refe
ence system@system of particles, interacting through the ce
tral interparticle energyUs( i j ) only#. Substituting the func-
tion gs(12)[gs(ur12r2u) in Eq. ~7! we solve the problem o
dipole-dipole interactionUd averaging over all positions an
orientations of particle 2. This integration depends on
shape of the system~but does not depend on the volume a
on the type of central interparticle interaction!. It is impor-
tant to stress that using the infinitely elongated ellipsoi
shape is of advantage because this is just the case w
demagnetization factors are of no consequence and do
need to be accounted for. For this shape of a ferrofluid c
tainer we get

g1~v1!5~ae /sinhae!exp~ae cosv1!,

M5ML~ae!5nmL~ae!, ~8!

ae5mHe /kT, He5H14pM ~H !/3.

The expression for an effective magnetic fieldHe coincides
with those in the Weiss mean field theory. Thus, the s
consistent density functional approach~6! is equivalent to
the mean field theory, and in the framework of the first-ord
perturbation method predicts the ferromagnetic phase tra
tion in the absence of an external field, whenxL>3. Appar-
ently, this is caused by the fact that in exact virial expans
~4! of the pair correlation function all the influence of th
dipole-dipole interaction is determined only by functio
g̃2@12,g0#. The approximate self-consistent expression~6!
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imposes an additional influence by way of one-particle d
tribution functionsg1(v i). The latter also takes into accoun
the dipole-dipole interaction, the influence of which turns o
to be overestimated.~It is worth mentioning that for moder
ately concentrated ferrofluids with rather small particles a
initial Langevin susceptibilityxL;3, none of the experi-
mental and computer studies demonstrate the existenc
ferromagnetic order!. Therefore, it is not a surprise that suc
excess account for the dipole-dipole interaction leads to
prediction of a ferromagnetic state in dipolar fluids.

The behavior appears to be much stranger when this
fective field is calculated on the basis of the second-or
perturbation method@13#, in the framework of which the pair
correlation functiong̃2@12,g1# is determined under the con
dition when all the corrections linear in dipole-dipole inte
action energyUd are taken into account. Using the se
similar replacement~6! from the definition of the pair
correlation function, we get

g̃2@12,g1#5@12bUd~12!#gs~12!1exp@2bUs~12!#n

3 H E dr3E dV3 g1~v3!@2bUd~13!

2bUd~23!#exp@2bUs~13!2bUs~23!#

22E dr34E dV3E dV4 g1~v3!g1~v4!

3@2bUd~34!#exp@2bUs~34!#J ,

b51/kT. ~9!

The expression for the pair correlation function followin
from the averaging over the positions and orientation of
third and fourth particle in Eq.~9! could be found in Ref.
@13#. The result for the one-particle distribution function re
resents the exponential factor in expression~7! in a form of
expansion over the first- and second-order Lagrange poly
mials Pn(z), n51,2:
3-3
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exp@G1~a,M̃ ,Q!P1~cosv1!1G2~M̃ !P2~cosv1!#
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E dV1 exp@G1~a,M̃ ,Q!P1~cosv1!1G2~M̃ !P2~cosv1!#

G1~a,M̃ ,Q!5a1xLM̃1~xL
2/48!M̃ ~1129Q296M̃2!, G2~M̃ !529xL

2M̃2/96,

M̃5E dV1g1~v1!P1~cosv1!, Q5E dV1g1~v1!P2~cosv1!.

Here M̃5M /nm is the relative magnetization, andQ has a meaning of quadrupole moment of the one-particle distribu
function describing the degree of ferroparticle moment parallel alignment. Since we are interested in a one-particle dis
function zero field behavior, the coefficientsG1 and G2 of expansion~10! should be determined numerically from th
following set of equations:

M̃5

E dV1 exp@G1~0,M̃ ,Q!P1~cosv1!1G2~M̃ !P2~cosv1!#P1~cosv1!

E dV1 exp@G1~0,M̃ ,Q!P1~cosv1!1G2~M̃ !P2~cosv1!#

, ~11!

Q5

E dV1 exp@G1~0,M̃ ,Q!P1~cosv1!1G2~M̃ !P2~cosv1!#P2~cosv1!

E dV1 exp@G1~0,M̃ ,Q!P1~cosv1!1G2~M̃ !P2~cosv1!#
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In the case where no external magnetic field is pres
(a50) two kinds of the solution exist. The first one
trivial, when the distribution momentsM̃ and Q equal to
zero. Consequently, we getG15G250 andg1(v1)51. It
means that the orientational distribution of ferroparticle m
netic moments is homogeneous according to no magnet
liquid state of ferrofluid.

Besides that, when the interparticle dipole-dipole inter
tion is rather intensive and the particle concentration is
low, the bifurcation of a solution occurs, resulting in th
appearance of the inhomogeneous orientational distribut
The unique parameter determining the bifurcation poin
the initial Langevin susceptibilityxL . From set~11! the criti-
cal bifurcation value x* may be easily obtained;x*
512(A522)'2.833. The last bifurcation value is less th
the critical onexL53 obtained from the Weiss mean fie
approach~8!. In the region ofxL.x* , the solution of the
equation set~11! is demonstrated in Fig. 1. Both the quan
ties M̃ , andQ, are the increasing functions ofxL , and in the
local vicinity of the critical point the following scaling de
pendencies hold true:

M̃;~xL2x* !1/2, Q;~xL2x* !. ~12!

The analysis of Fig. 1 exposes the strange feature of
anisotropic solution. With thexL growth the quadrupole mo
ment Q asymptotically reaches the maximum allowab
value, that is, unity:Q→1, xL@x* . This means that al
magnetic moments tend to align along theOz axis of the
container for strongly interacted and concentrated ferrop
01150
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ticle system. However, the relative magnetization does
exceed the valueM̃* , M̃* '0.6. This leads to a very sur
prising conclusion that forxL@x* about 80% of the particle
magnetic moments are codirectional to theOz axis, and
nearly 20% of the ferroparticles are aligned antiparallel. T
effect is demonstrated in Fig. 2, and the anisotropic orien
tional distributiong1(v1) is characterized by the presence
two maximums describing the probabilities for the random
chosen magnetic moment to be coparallel (v150) or anti-
parallel (v15p) to a major ellipsoidOz axis. This behavior
of the one-particle distribution function looks like the liqu
ferrimagnetic state instead of the liquid ferromagnetic sta
predicted by the first-order perturbation method~8! ~the
Weiss mean field model@8#! and by the theoretical@10# and
computer models@1,9#. A mathematical reason is that, unlik

FIG. 1. Anisotropic solution of Eqs.~11!: curve 1 is the depen-

dence of the spontaneous relative magnetizationM̃ on the initial
susceptibilityxL in the regionxL.x* ; curve 2 is the same depen
dence for quantityQ.
3-4
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SPONTANEOUS FERROMAGNETIC ORDERING IN . . . PHYSICAL REVIEW E68, 011503 ~2003!
the first-order perturbation method~7!, the approximation of
the second perturbation order over the dipole-dipole ene
takes into account the interaction in all pairs and triplets
ferroparticles@13#: namely, the account of dipole-dipole in
teraction in ferroparticle triplets results in disordering
magnetic moments. Since we cannot find any physical
sons substantiating the ferrimagnetic ordering in ferroflu

FIG. 2. Zero field inhomogeneous one-particle distribution fu
tion g1(v1) ~10!: the character angle dependence for casexL58.
J.

n

ci.

ett
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~and the ferromagnetic one as well!, the only physically
meaningful solution of Eqs.~11! is the homogeneous, orien
tationally undisordered liquid state of ferrofluid in the a
sence of an external field.

The point is that the second-order self-consistent per
bation model does not predict the spontaneous ferromagn
orientational ordering. So, any principal physical conclus
concerning the possibility of a ferromagnetic state in fer
fluids, arising from the mean field theories and density fu
tional models@10#, has no experimental verification and
not to be treated as an exact theoretical result. This con
sion seems to be an artificial consequence from the s
consistent approximation~6!, and the phenomenon of spon
taneous orientational ordering in magnetic fluids induced
the dipole-dipole interaction has to be considered extrem
questionable.
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